
Mercury Engine Features 10/10/2005

1. Crash Logs
Mercury comes with a crash log generator. It, like everything else, is compatible with
both Linux and Windows. It provides information about the current crashing issue, as
well as information that was on the stack, like static-time code.

When you run code like this:

Main.cpp
int MakeMess()
{
 int i;
 memcpy(NULL, &i, 100000);
 return 5;
}

int main(int argv, char* argc[]) {
 StartCrashHandler(argc, argv);
 MakeMess();

return 1;
}

Instead of getting a nasty message like this and no hint as to what’s wrong…

You get a nice file like:
CrashLog.txt
CVS Build crash report (build 1000)

Crash reason: Access Violation

0043abf3: memcpy()
00402d34: void MakeMess(void)
00402dfa: main()
7c910732: ntdll!RtlAllocateHeap [7c900000+105d4+15e]
7c910732: ntdll!RtlAllocateHeap [7c900000+105d4+15e]
7c911596: ntdll!wcsncpy [7c900000+10a8f+b07]
0043b30e: _onexit()
0043cbf3: mainCRTStartup()

--End of Crash Report

Obviously, copying 100000 bytes to memory starting at address zero isn’t allowed,
but we don’t have to scratch our heads when we get that little box. The program can
either exit cleanly or you can run custom code to present the user with a dialog box
saying that the program crashed.

In code you can force a crash, say for an assert or known failure. You can do this
using three methods (all of which can be found in MercuryUtil.h).

1) mercury_crash(message);
2) ASSERT(condition);
3) ASSERT(condition, message);

The crash handler will provide the user with the reason on the first line like the
following after you execute the command: ASSERT(5 < 4);

CrashLog.txt
CVS Build crash report (build 1000)

Assertion 5 < 4 failed

00439aae: void debug_crash(void)
00439c02: void ForceCrashHandler(char const *)
004326d5: void mercury_crash(char const *)
00402d36: int MakeMess(void)
00402d73: main()

.

.

.

2. MercuryINI
Mercury contains an easy-to-use comprehensive class designed to process and deal
with INI files. MercuryINI is a class that is a C++ representation of an INI file. It
supports both loading and saving. PREFSMAN is an example of a global singleton
instantiation of MercuryINI.

MercuryINI can either run parallel to a file (use Open() and Save() or load from
and save to plain strings (use Load() and Dump()). You can use the non-default
constructor if you want the file to open in the constructor and optionally save in the
destructor.

INI files are broken up into different keys and each key has a set of values. Each
value can be whatever fits on one line. You can use ConvertToCFormat() and
ConvertToUnformatted() from MercuryUtil.h if you want to store multi-line or
non-text data in the INI file.

Access to MercuryINI is obtained by using the various GetValue() functions.
GetValue() functions with a postfix, like GetValueS(), GetValueI(),
GetValueF() retrieve the corresponding string, integer, or floating-point value. If
the value does not exist it will return to you whatever is put into the default value and
if the bMakeValIfNoExist flag is set, it will make the value based on the default
value. The GetValue() function that does not have a postfix will give you the value
by parameter and return whether or not it was able to retrieve the element.

3. Mercury Utility Functions
Mercury contains some general utility functions for general use. It is suggested you
use these functions because at a later time, the way in which files are used may
change. If you use these functions, you will not have to perform any conversions.

• CString ssprintf(const char * unformatted, …) – Perform
formatted text output, however do not send it to the console, instead return the
string of its output. This function acts exactly like printf() for strings. It is
suggested over stringstreams because it is slightly faster and allows for one-
line conversions, unlike stringstreams which require clearing, and reading of
the string.

• CString ConvertToCFormat(const CString & ncf) – Convert
string containing binary characters to C-style string. This means convert
newlines to \n, back slashes to \\, tabs to \t, etc.

• CString ConvertToUnformatted(const CString & cf) –
Convert a C-style formatted string into it's binary string equivalent. This will
process the \t’s, \n’s, \0’s, etc. and convert them into the characters they are
meant to represent.

• long DumpFromFile(const CString & filename, char *& data)
– Dump data from a file into a char * and return the size of data. If -1 then
there was an error opening the file.

• bool DumpToFile(const CString & filename, const char *
data, long bytes) – Dump data into the file filename. bytes specifies
the length of data. Returns true if successful, false else.

• void FileToCString(const CString & filename, CString &
data) – Dump the contents of a file to data.

• void CStringToFile(const CString & filename, const
CString & data) – Dump data into file.

• bool FileExists(const CString & filename) – Return true if
the file exists, false if not.

• long BytesUntil(const char* strin, const char * termin,
long start, long slen, long termlen) – Return the number of
bytes until a desired terminal where strin is the input string, termin is the
tokens to look for (one per character) start is where to begin looking in
strin, slen is the total length of sterin, and termlen is the number of
terminal tokens to check for.

• long BytesNUntil(const char* strin, const char * termin,
long start, long slen, long termlen) – Same as above, except
returns number of bytes until it reaches a character that is not in the list of
tokens.

• void SplitStrings(const CString & in, vector < CString >
& out, const char * termin, const char * whitespace, long
termlen, long wslen) – Split given string in into a vector of strings
based on separation of the string by whitespace and terminals. termlen is
the number of terminals to look for, wslen is the number of whitespace chars
to look for. Example: you can split apart (5,6,8,9) by saying
SplitStrings(“5, 6, 7, 8, 9”, out, “,”, “ “, 1, 1);

• inline void Clamp(float & in, float min, float max) –
Clamp in within the boundaries min and max.

4. Mercury Log
Rather than just clogging up the out console window with tons of debug information
and trying to scatter around debug output files, Mercury provides a simple log
system. MercuryLog.h provides a simple logging class which is instantiated as a
singleton at static time called LOG. If you wish to have outputted format, use
ssprintf to format your output.

Example:
Input Code
1
2
3
4

LOG.Info("This is being outputted to the info file.");
LOG.Log(ssprintf("This is formatted output %f, %d.",

55.22f, 5));
LOG.Warn("You really messed something up now!");

Output (to console)
1
2
3
4
5

This is being outputted to the info file.
00:00.150: This is formatted output 55.220000, 5.
00:00.150: ***
00:00.150: WARNING:You really messed something up now!
00:00.150: ***

