
The Mercury Game Engine
(Version 0.2 Preliminary Design Document)

© 2006 Joshua Allen, Charles Lohr
Other projects in this document are mentioned and they are property of their respective owners.

1

Table of Contents

Table of Contents...2
General Information...3
General Description... 4
Current Features...5

Code Features:.. 5
Implemented Features:... 7
Built-In Features:..7
Tools...9

Goals.. 9
Coding Standards...10
Developer and Resource Information.. 11
Major Entities...12

DISPLAY .. 12
FILEMAN.. 12
PREFSMAN...12
INPUTMAN...12
LOG..12
MESSAGEMAN.. 13
THEME.. 13
OBJECTREGISTER.. 13
BENCHMARK...13

Utility... 13
Global Namespace General Utility...13
Global Namespace Math Utility...15
Math Types Utility... 15
Data Types Utility.. 15

Class Layout...16
Commonly Used Objects... 17

2

General Information
The Mercury Game Engine or just Mercury for short is under the following license. Use of
it is not limited to the following license depending on the intended use of the end product.

Copyright (c) 2004-2006 Charles Lohr, Joshua Allen, David Chapman, Benjamin
Dailey, Dominic Cerquetti

All rights reserved.

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following
conditions are met:
- Redistributions of source code must retain the above

copyright notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright

notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the distribution.

- Neither the name of the Mercury Engine nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Parts of the code, namely the crash handler are derived from StepMania, which uses the
VirtualDub system created by Avrey Lee. Those parts are Copyright Avrey Lee, Glenn
Maynard, and Chris Danford. All content is either under the MIT-X11 license or public
domain. Both licenses are completely compatible with the BSD license that Mercury is
under.

Mercury makes use of the following libraries and if you choose to use their functionality in
Mercury, you must comply with their terms and conditions.

OpenGL – BSD License
Open Dynamics Engine – BSD License
Zlib – Zlib License (mostly compliant with the FreeBSD License)
LibPNG – LibPNG License (mostly compliant with the FreeBSD License)
FreeType – The Freetype License or The GPL License.
OpenAL – The LGPL License
PlayStation 2 Support – The Free Academic License 2.0*

*The Free Academic License 2.0 Does NOT permit commercial use of its material.

In short, you may use Mercury in closed source, commercial production without
permission. You may modify it how you see fit without any prior written consent.
However, it would be kind to let us know of your project.

3

http://opengl.org/
http://www.opensource.org/licenses/afl-3.0.php
http://ps2dev.org/
http://www.opensource.org/licenses/lgpl-license.php
http://openal.org/
http://www.opensource.org/licenses/gpl-license.php
http://freetype.sourceforge.net/FTL.TXT
http://freetype.sourceforge.net/
http://www.libpng.org/pub/png/src/libpng-LICENSE.txt
http://www.libpng.org/
http://www.zlib.net/zlib_license.html
http://www.zlib.net/
http://www.opensource.org/licenses/bsd-license.php
http://www.ode.org/
http://www.opensource.org/licenses/bsd-license.php

General Description
Mercury is a C++, Open Source, Multi-platform, Multi-threaded Game Engine that runs
fully featured on Linux and Windows®. It is 64-bit x86 compatible and can operate on 32,
64 and 128-bit processors. Mercury compiles in GCC3.2 - 4.1 in Linux, dev-C++/minGW,
Visual Studio® 6, .Net 2003, and .Net 2005 in Windows®.

Mercury isn't just a graphics library but a full programming environment. In general code
designed to be run in Mercury needs not to make calls to the system or any functions that
would be platform dependent. Despite this, Mercury should remain small and applications
that utilize it should not have to suffer exaggerated load times for features they do not use.
Mercury's registration system allows different features to be compiled in without
modification of other code. If there is no need for physics, the ODE classes can simply not
be linked and ODE will not be used.

Mercury is designed around the open source fundamentals. Most of what you will see
supported in Mercury and used with Mercury is Open. We feel that you should be able to
develop a great game without having to purchase proprietary tools and systems. We as the
designers of Mercury believe that it is important that software move toward open source in
general. We do not require, but strongly encourage derivative projects to become open
source as well.

When a programmer uses Mercury they should not need to make use of system dependent
external libraries such as Microsoft's .NET®. All programmers are strongly encouraged to
make use entirely of functionality already included in Mercury. Programmers also do not
need to write their own classes to do menials activities with data. Structures like matrices,
vectors, hash tables, etc. are already written for the user and plug into Mercury.

Mercury has re-written some of the STL data types for added functionality as well as
improved performance. Users should exclusively use MStrings, MVectors, and MDeques
instead of their STL counterparts.

Mercury's primary goal is speed. Mercury sacrifices some of the benefits that are gained by
clean coding when a noticeable performance increase can be found for the end user. You
can see this in many places in Mercury where you can see duplicate code, extra use of inline
functions, macros, and private data members being made public without accessors.
Assembly code for common math functions is compiled in Windows for extra performance
is an example of the paramount of speed in Mercury.

Code-wise Mercury is laid out similar to StepMania's Rage engine by Glenn Maynard and
Chris Danford. More information about StepMania and its engine may be found at
www.stepmania.com.

4

http://www.stepmania.com/

Current Features
Mercury has a variety of notable features and tools available to the programmer. They can
be split up in to four basic groups: Code Features, Implemented Features, Built-In Features,
and Tools.

Code Features:
 Highly portable and robust code; can run on:

 Linux (most flavors)

 Microsoft Windows® 98, ME, 2k, XP

 ReactOS 1

 Sony PlayStation® 2 2

 Cross-platform support, can compile in:

 Microsoft Visual Studio 6

 Microsoft Visual Studio .Net 2003

 Microsoft Visual Studio .Net 2005

 Bloodshed Dev-C++

 GCC 3.2 through 4.1

 Strong object-orientation, most entities in Mercury abstract from
MercuryObject, most core functionality can be acquired through use of global
singletons.

 Basic RTTI when manually used. This prevents overhead due to RTTI when
unnecessary, however allows the user to identify objects when necessary.

 Object registration, Command and Message based system. Objects, singletons,
external code, etc. can talk to objects in Mercury through a clean, unified
system.

 Automatic Object Registration allows you to do nothing more than link in
objects and spawn them by nothing more than a string that could be read from
the theme or anywhere else.

 Useful existing framework for use with graphics applications, included but not
limited to the following:

 Matrix Class

 Vector/Point Class

 Quaternion Class

 Color Class

 Unified standard fast math functions, COS, SIN, ABS, etc...

1 Sound does not work
2 Sound does not work and Video is not complete

5

 Matrix/Vector/Point Utility functions

 Self-contained file system. Allowing for common reading of files, assets and
other data from any of the following transparent to its use:

 Zip Files

 Uncompressed package files

 Memory Files

 Compiled-in zip archive files

 Ordinary files off of the hard drive

 Theme system to allow for easy multiple language/locale support stacking of
skins and easy aggregation of game assets.

 Log system to provide a unified generalized output for logging purposes, so
output can be seen both in console and logged to disk or whatever device is
pertinent to the architecture.

 Memory Manager to allow for memory accounting. when in debug mode the
memory manager can be turned on and any leaked ram will be shown along with
the file and line number of the statement that leaked it.

 Loading of Models

 Loading of Images

 Loading of Text Boxes

 Particle engine

 Orthographic and Perspective view

 Built in data structures for extra performance and functionality:

 MString (to replace the STL's string)

 MVector (to replace the STL's vector)

 MDeque (to replace the STL's Deque, Queue, and Stack)

 MHash (string-based hash table)

 General Purpose Timer/Clock

 General Thread Class

 Utility functions for most system-dependent and extra-featured uses

 SAFE_DELETE/FREE

 Sleep

 Basic String Processing

 Assertion

 And a ton of examples!

6

Implemented Features:
 Open Dynamics Engine

With ease, use the in-engine map editor to create and modify a scene to your
liking, then simply describe the way each object should behave when physics is
applied, select which objects can be interacted with and play!

 PNG and BMP support

Transparently load BMP and PNG files. Support for extra file formats is easy to
add. PNG and BMP are two of the most widely used lossless formats available
and allow you to save your graphic asset in most programs for use in Mercury.

 Zlib support

Use Zip files interchangeably with the native filesystem. This allows you to
steamroll updates or general assets into a single zip for distribution and use.
Heck, you can just compile the zip file into your end .exe file for a live demo at
your next interview. No bulky installers, or messy unzipping multiple files to a
desktop to let your potential employer see your work.

 OpenGL

Use the most widespread open graphics library for the end display of your
project and get the benefits of system acceleration and identical functionality on
many different platforms. Also, Mercury supports GLSL on a per-material
basis, allowing you to use pixel shading to it's full potential.

 DbgHelp

If your program crashes on an end user, instead of getting an unfriendly error
box with little to no indication as to what has gone wrong, Mercury can output a
nice clean crash log with the reason for the crash and a call stack with the names
of all the symbols of the path that lead to the crash.

 FreeType

Use your .TTF fonts and see them in their full glory. FreeType allows you to
blow your text up and keep all of your edges clean and smooth. When using
FreeType fonts, a user can change their screen resolution and Mercury will
automatically re-render all of the fonts displayed on the screen.

 OpenAL

Make use of that player's 5.1 Surround system or that pair of headphones the
user is wearing to it's full potential. Seamlessly you can attach sounds to objects
and they will be presented to the user where they should be and fully using their
hardware.

Built-In Features:
 Comprehensive Crash Handler

The crash handler in Mercury operates in Windows and Linux, 32 and 64 bit. If the
program performs an ASSERT, FAIL, or ASSERT_M, the reason for the crash will

7

be printed on the first line of the crash report. Otherwise, say if the program writes
to address 0x00000004, or another dumb move, the crash handler will present the
reason for the crash: “Segmentation Fault – Unmapped Address 0x00000004” as
well as a stack showing all of the functions that were called leading up to the crash.

 Debug Memory Accounting System

Before you should release any program using Mercury, you should turn on the
_DEBUG_MEMORY flag in debug mode. This will cause mercury to record every
instance of memory allocation as well as deallocation that uses new, delete, malloc,
calloc, realloc and free. When the program execution is complete, a list of every
allocation that was not deleted will be presented. Included in it is the absolute
address of the memory, as well as the file name and line number the allocation
command was on.

 Dynamic Shape Creation

Create shapes without having to import them from a model. This lets you put
placeholder artwork in your application without spending hardly any time at all.

 INI file support

Make your program more dynamic with the INI file support that Mercury includes.
You can make a new MercuryINI object, and load or save it to a file. Gain access to
sections and keys through a variety of accessors.

 Mercury Model Format

Mercury has its own binary model format. While this does not allow for manual
modification of models, it does provide a significant reduction in loading time.
Besides, who, realistically is going to edit a 20,000 polygon mesh in notepad? The
Mercury model format supports bones, vertex-weights, quaternion-based animations,
multiple meshes and materials.

 Software Renderer

On systems where OpenGL does not exist or fails to operate properly there is a
backup plan! The Renderer flag can be set in Mercury.ini to read SWC instead of
OGL and get the user going. The software renderer is considerably faster than using
Mesa on Linux systems, as it foregos many of the features that are not terribly
important to using Mercury.

 Unified device-independent input system

Use one common interface system for all systems. This means, without modification
to your code you can be using the analog stick on your Sony DualShock® Controller
or the mouse at someone's computer and you couldn't care less. The A button on a
keyboard or the X button on a PS One controller, they're all the same interface
method. Heck, you can even let the user remap the buttons however they see fit and
there's no nasty input code you have to write for your own program.

 Plain-text command/tweening system

Mercury allows you to compose the way objects should behave through plain text
strings. It processes these at run time and for commonly used commands, i.e. the

8

motion of a particle on a firework it allows caching of commands, thereby meaning it
processes the plain text once, and just runs the commands whenever necessiary. An
example of an Object Command is: “x,0;linear,2;x,100;” which would cause a
smooth motion of whatever object it is applied to to move from 0,0,0 to 100,0,0 over
the course of two seconds.

 Copper UI System

Mercury comes with a fairly easy-to-use and fully customizable UI interface called
Copper.

Tools
 HGPCK archiver

Archive your files in a HGPCK file instead of a zip file if initial loading time is an
issue. Unlike .ZIP files, the entire file index is stored at the beginning of the file,
which makes archive enumeration take a fraction of the time.

 MakeOBJ

Take a .ZIP file and turn it into an OBJ file for use with Mercury. This allows you to
compile content into your very EXE. You can get a product in the end that is a
stand-alone exe file that contains all content and libraries necessary to run. This is
ideal for resume, demos and Internet-distributable applications.

 ModelOptimizer

Optimize your models for display. The model optimizer currently tears apart meshes
whenever possible to minimize calculation and modification of vertex data. It also
removes “invisible” bone weights and animation effects.

 MS3D Export Plugin

Use Chumbalum Soft's MilkShape 3D® to import your models from virtually any
format edit your models and then export them to Mercury's native binary model
format keeping all bones, meshes, materials and animations in tact.

 OgreXML to HGMDL

Take in any format that the OgreXML converter can read such as Maya or 3D Studio
Max and import it with all of its features directly in the Mercury's native binary
model format.

 Doxygen-ready config file

Use the copy of Doxygen in CVS and instantly produce graphs and documentation
for the whole of Mercury including whatever new content you have added.

Goals
Among other things, Mercury aims to become a more complete game engine by adding
support in the following areas. We hope to encompass as much as possible to allow users to
do whatever they want without having to worry about importing extra DLLs and code they
don't need. We hope to provide the following in the coming year:

 Networking Support

9

 Better Pixelshading support
 DirectX Support
 Better PlayStation 2 Support
 Mac OSX Support
 LUA Implementation
 Self-Compiled Scripting Language
 A high-performance red-black tree to replace the STL's Map.
 More Texture format support
 More Importing tools

Coding Standards
Mercury uses coding standards similar to those of StepMania. We believe in the following
coding standards: Tabs, not spaces; spaces between parenthesis; m_ prefix to class member
functions; comments of any style are acceptable. Magic numbers should not be used.

Examples:
///Demonstration Class
class A : public class B
{
public:

A() : m_i(0) { }

inline bool IsFive() { if(m_i == 5) return true; else
return false; }

///Returns if the value is six.
inline bool IsSix() { return (m_i == 6); }

///Perform a loop
void DoLoop();

int m_i;
};

void A::DoLoop()
{

for(int j = 0; j < m_i; ++j)
LOG->Info(ssprintf(“%d\n”, j));

}

Notice that comments relating to something that should be documented in doxygen have
three forward slashes. This is how doxygen looks for class information. Also pay attention
to the parenthesis use as well as the curly brace use. Inline functions have their curly brace
and code on the same line, if the line gets too long, it can move to the next line. When in
CPPs, function definitions should be on a line by themselves.

10

Usage-wise we are a little funny. We follow these general guidelines: Minimize use of the
STD, meaning <iostream>, <vector>, <deque>, <sstream> should not be used. Instead of
using streams people should use ssprintf(), instead of vectors, use MVector; instead of
deques, stacks and queues, use MDeque; instead of printing out to the console, use LOG.
Never use commands like MessageBox, or other windows-dependent commands, unless
writing a driver.

Minimize #includes in your .h files, keep them for your .cpp files. This decreases compile
time and makes it easier to understand what is being included in what order. There can be
serious issues if something like windows.h is included in the .h of one of your device
drivers. For example: windows.h defines LoadImage as LoadImageA. This means
LoadImage will be mislabeled in parts of mercury that have the LoadImage function.

Developer and Resource Information
NOTE: ALL INFORMATION IN THIS SECTION IS SUBJECT TO CHANGE

Mercury's current home is on SourceForge.net. The current URL is: http://hgengine.sf.net.
Mercury is in a SourceForge CVS repository. In order to get a copy of Mercury, you can get
it via the instructions found at http://sourceforge.net/cvs/?group_id=140522. The module for
Mercury is “Mercury.” If you want to browse our CVS you can look at it here
http://hgengine.cvs.sourceforge.net/hgengine/Mercury/. If you would like the link to the
SourceForge page, it is here http://sf.net/projects/hgengine.

Windows Users:
Once you have Mercury checked out, you will notice a series of Visual Studio and
Bloodshed Dev-C++ project files in the src folder. You should select the build to “Release”
as the other builds may not work. Compile and run your application in the root Mercury/
folder, not in the Release/ folder or whever it compiles it. Running it elsewhere may result
in an inability to find appropriate DLLs. If it finds all of the DLLs, mercury will start but
will show nothing other than a black screen.

Linux Users:
Once you have Mercury checked out, you will have to run the following commands:

sh autogen.sh
./configure
make

Then, you will have a file called “mercury” in your src folder. Run it from your main
Mercury/ folder. The actual executable is located in src/.libs/. Use on Linux requires the
following:

 LibSDL
 ODE
 OpenAL
 Xorg/X11
 Zlib
 LibPNG

11

http://sf.net/projects/hgengine
http://hgengine.cvs.sourceforge.net/hgengine/Mercury/
http://sourceforge.net/cvs/?group_id=140522
http://hgengine.sf.net/

Major Entities
Mercury has a series of major entities or objects that people generally interface with. Since
the functions and data types they contain change often and for the most part, they will not be
described here. For information regarding them, you may click on the [Doxy] link for each.
Note that this is not a complete list. It only contains global objects that make sense for the
end-user to interface with.

DISPLAY
[Doxy] Mercury has an interface to the display driver that can be accessed via the
DISPLAY singleton. In general, until you get into more advanced programming, most
access to the DISPLAY singleton is unnecessary as most of what you want to do can be
done simply by using separate objects. It is a very powerful tool that can be used when
writing your own custom render cycle for an object.

FILEMAN
[Doxy] The Mercury File Manager “FILEMAN” is how you should access all files.
You should avoid using regular I/O functions i.e. fopen, fstream, etc. since using them
will not allow your program to function using the virtual file systems. FILEMAN gives
you a one-stop way to get to any MercuryFile objects you may need to use or a listing
of a folder. The file manager also understands prefixes of “FILE:” “MODEL:”and
“GRAPHIC:” where it will use the theme system to find your file.

PREFSMAN
[Doxy] PREFSMAN is a global handle to Mercury.ini that allows you to obtain general
preferences for the whole of the application. Most information core to Mercury is
stored here, such as the renderer, list of input devices, logging information, key
mappings, sound drivers, theme list and graphics output information. You may store
core information relating to your program here. Information such as the last mode
played, or the last user name of the player or mouse sensitivity would make sense to go
in this file.

INPUTMAN
[Doxy] The Input Manager allows objects to receive information regarding peripheral
input. A user can both inquire as to the current state of some device, i.e. A pointing
device or if a key is pressed. A user can also subscribe to be informed about events
such as a button being pressed or released via the message manager.

LOG
[Doxy] The log allows programmers to output general information, trace information
and warnings in a meaningful manner. If you are running in debug mode, anything
logged will also be sent to the console for easy debugging.

12

http://hgengine.sourceforge.net/Doxy/classMercuryLog.html
http://hgengine.sourceforge.net/Doxy/classMercuryInputManager.html
http://hgengine.sourceforge.net/Doxy/classMercuryINI.html
http://hgengine.sourceforge.net/Doxy/classMercuryFileManager.html
http://hgengine.sourceforge.net/Doxy/classMercuryDisplay.html
http://hgengine.sourceforge.net/Doxy/hierarchy.html

MESSAGEMAN
[Doxy] The Message Manager allows singletons, static code and objects to talk to all
other objects as well as call commands. This system allows any entity to subscribe to
messages and whenever one of those messages is raised, code within that entity will be
called. Examples of messages could be “mappedinput” or “quit.” The message
manager can both broadcast messages for immediate dispatchment, as well as post
messages for dispatch upon the next program cycle. Messages can be posted from any
thread, allowing for inter-thread coordination.

THEME
[Doxy] The theme manager provides access to a polymorphic, multiple-inheritance
theme system. This allows the programmer to have their code get game content
(graphics, models, files) even as much as information such as an item's HP or a person's
hair color from a Theme. The theme allows users to define multiple fall backs. IE If
you have a special character in your story, it may want to inherit traits such as HP or
behavior from a more general character class. Any of the values or graphics gotten
from one of the theme values can be overridden by another theme. You can load a
second theme, say a German theme on top of the default theme. You can specify the
order in which to overlay themes. IE: Christmas => German => Default.

OBJECTREGISTER
[Doxy] The object register keeps a table of all of the currently created objects in
Mercury. If you are using scripting or need to acquire control of an object you don't
have the pointer to, you can give its name to the object register, and it will return a
pointer to that object. You can then even inquire as to the object's type using GetType().

BENCHMARK
[Doxy] One of the last user-functional singletons in Mercury is the benchmark. You
can put BENCHMARK.Begin() and End() calls around any code you want to analyze
the performance of. When the program is done execution, it will display a list of all of
the run benchmarks, the number of times the benchmark was started and stopped, and
the average amount of time that was spent inside of one of the calls. This is a
alternative to code profiling. A user may put a benchmark statement inside of a
conditional statement so that it will only get run when a condition is met, unlike
profiling.

Utility
Mercury has a variety of utility functions to increase programmer productivity. These
utilities can be split into four basic groups below:

Global Namespace General Utility
The global namespace has a series of utility functions. Most are included in global.h
and MercuryUtil.h. They include:

 SAFE_DELETE(x) – Delete X if X is nonzero, and set it to zero.

13

http://hgengine.sourceforge.net/Doxy/hierarchy.html
http://hgengine.sourceforge.net/Doxy/classMercuryObjectRegister.html
http://hgengine.sourceforge.net/Doxy/classMercuryThemeManager.html
http://hgengine.sourceforge.net/Doxy/classMercuryMessageManager.html

 SAFE_DELETE_ARRAY(x) – Same as previous, but for arrays
 SAFE_FREE(x) – Same as previous but does not call destructor
 MVPtr – Integral type for a void * (changes based on word width)
 nextPow2(x) – Get the value of the next power of two higher than x, IE 5 will

return 8, 8 will return 16.
 makePow2(x) – Get the value of the next power of two equal to or higher than x,

IE 5 will be 8 and 8 will return 8
 long DumpFromFile(const MString & filename, char * & data) - Dump the

data in file filename to data. Data will be allocated appropriately, you must
delete it. It will return a value less than zero if it fails, otherwise it will return the
number of bytes read.

 bool DumpToFile(const MString & filename, const char * data, long bytes) -
Dump the string in data with length bytes to the file with name filename.
Returns true if it was successful, false if not.

 void FileToMString(const MString & filename, MString & data) - Counterpart
to DumpFromFile, except uses an MString.

 void MStringToFile(const MString & filename, const MString & data) -
Counterpart to DumpToFile, except uses an Mstring.

 bool FileExists(const MString & sFileName) – Return true if the file by the
given name exists, else return false.

 long BytesUntil(const char* strin, const char * termin, long start, long slen,
long termlen) - Returns the number of bytes until the character in strin is a
character in the list of tokens in termin.

 long BytesNUntil(const char* strin, const char * termin, long start, long slen,
long termlen) - Returns the number of bytes until the character in strin is a not
character in the list of tokens in termin.

 void SplitStrings(const MString & in, MVector < MString > & out, const
char * termin, const char * whitespace, long termlen, long wslen) - Split in into
separate strings in out using termin and whitespace as guidelines as to how to
split the string.

 T Clamp(in, min, max) - Clamp the value of in between min and max. This
could be used in a situation where a player must be forcibly bound inside of
some parameter.

 Swap32(n) - Return n byte-swapped (useful for changing endians)
 Swap16(n) - Identical to Swap32 except for shorts, not longs.
 ASSERT_M(condition, message) - If the condition assertion fails, present

message as the reason for failure.
 ASSERT(condition) - If the assertion fails, notify the user in a crash.
 FAIL(message) - Cause a program fail, and present the user with the message

for failure.
 REGISTER_OBJECT_TYPE(x) - Register the given object type in the type

register so that objects of that type can be spawned.
 REGISTER_SCREEN_CLASS(x) - Register the given screen type so that the

screen can be set based on values in metrics.ini.
 REGISTER_ODE_OBJECT_CLASS(x) - Register the given

ODEObjectLoadable type as an ODE class so it can be included with different
maps.

14

 CLASS_RTTI(CLASSNAME, PARENTCLASS) - Give your class RTTI. Put
this in your class definition.

 REGISTER_STATEMENT_TO_COMMAND(command, code) - Register the
statement in “code” to be a command, it can be any old expression.

 REGISTER_FUNCTION_TO_COMMAND(command, function) - Register
the function in function to be a command, it can be any function of the format
CMDCallback.

 KeyMappingWithCode(x, y) - register a key mapping of name x to the key
input system. If there is not already a key by that name in Mercury.ini, it will
add it with the default initial binding of y. y is in the format of [device]-[key] IE
0-65 is the A button on a keyboard.

Global Namespace Math Utility
There are a series of math utility defines and functions in the global namespace for
mathematical use. They are as follows:

 DEGRAD – Multiply degrees by this value to get radians.
 RADDEG – Multiply radians by this value to get degrees.
 Q_PI – Pi (floating point)
 SIN(x), COS(x), ATAN2(x, y), ASIN(x), ACOS(x), SQRT(x), TAN(x),

ABS(x), SQ(x) - Perform the given operation on x except do it in the best way
for the given architecture. For example: on Windows, typecasting sin to float is
faster than the sinf function. If you want to do math with a function that exists in
this list, use its instance in this list!

 DotProduct(x , y) - Perform the dot product of x onto y.
 MercuryPoint Rotate2DPoint(float fAngle, MercuryPoint pIn) - Rotate the

given point pIn around the Z axis.
 void VectorIRotate (const MercuryPoint & in1, MercuryMatrix &in2,

MercuryPoint & out) – Transform a vector in1 by the reverse of a matrix in2, but
only in the linear region (treat the matrix as a 3x3).

 void VectorRotate (const MercuryPoint & in1, const MercuryMatrix &in2,
MercuryPoint & out) – Same as VectorIRotate except forward, not reverse.

 void VectorMultiply(MercuryMatrix &m, const MercuryPoint &p,
MercuryPoint &out) - Multiply a given point p by a matrix m.

 void InvertMatrix(MercuryMatrix &in, MercuryMatrix & out) - Perform a
matrix inversion on in. Note that this is VERY slow.

 MQuaternion SLERP(const MQuaternion &a, const MQuaternion &b, float t) -
Spherically interpolate two quaternions a and by by an amount t.

Math Types Utility
Mercury has types for Quaternions[Doxy], Vectors/Points[Doxy], Matrices[Doxy] and
Colors[Doxy] along with public member functions to perform all necessary math functions
on them.

Data Types Utility
Mercury has rewritten certain base types in order to have increased performance
functionality and standardization within mercury over the STL. They are as follows:

15

http://hgengine.sourceforge.net/Doxy/classMercuryColor.html
http://hgengine.sourceforge.net/Doxy/classMercuryMatrix.html
http://hgengine.sourceforge.net/Doxy/classMercuryPoint.html
http://hgengine.sourceforge.net/Doxy/classMQuaternion.html

 MString [Doxy]
Mercury's string class is a class whose definition is strongly based upon
StdString, a class by Joe O'Leary. It's designed to be VERY fast though. In
general it can be used interchangeably with the STL's string.

 MVector [Doxy]
Mercury's vector class is a work-alike to the STL's vector class, however it does
not require iterators to perform basic insertion and removal from it, instead it
uses integers for all accessing.

 MDeque [Doxy]
Mercury's deque is a work-alike to the STL's, however it does not have an
iterator internal to it. One should use MDequeIterator for an iterator. It is a drop
in replacement for queue, deque and stack.

 MHash [Doxy]
String-indexed hash table. This has no STL counterpart. It exists for the purpose
of providing extremely high speed access to string-indexed data types in
situations where there will not be a ridiculously large number of elements.

Class Layout
All things that appear on the screen in Mercury must abstract from MercuryObject. In fact,
virtually everything that is a real entity in Mercury abstracts from MercuryObject. This
includes screens, text and pretty much everything else. You should abstract from it too.
You should visit the Doxygen information for MercuryObject [Doxy] and MercuryScreen
[Doxy].

In general objects have a clear distinction between regular objects and screens. Regular
objects are added to screens. Objects can be added to other objects as well. When an object
is added to a screen, whether to put the object in as a perspective object (3D view) or an
orthographic object (2D view) must be specified. When something happens to a parent
object, its children inherit the effect. IE if a person is moved 30 units on Z, all of his body
parts will be moved as well.

MercuryObject has the following virtual functions that it would make sense to overload:
 void Init()

This gets called after the creation of objects. Objects should not have
initialization code in their constructor to allow for future multithreading
processes. In here you should load any objects on your screen or object and set
up the environment how you would like.

 void SetName(const MString & sName)
This gets called any time the name of the object is changed. Normally objects
don't need to override this.

 void Update(const float fDtime)
This gets called on every update, it has the amount of time that has occurred
since the previous update in fDtime. This allows you to do any necessary
modification to your children or other game play.

 void Message(int Message, PStack & data, const Mstring & sName)
Receive a message you have registered for. Notice that Message in this case is
an integer, instead of a string. You must first register for messages and provide

16

http://hgengine.sourceforge.net/Doxy/classMercuryScreen.html
http://hgengine.sourceforge.net/Doxy/classMercuryObject.html
http://hgengine.sourceforge.net/Doxy/classMHash.html
http://hgengine.sourceforge.net/Doxy/classMDeque.html
http://hgengine.sourceforge.net/Doxy/classMVector.html
http://hgengine.sourceforge.net/Doxy/classMString.html

an int and the name. Your ints should be #defined so that you can use a switch
statement for the message number.

 void Render()
Access to render is usually not necessary unless you do something that is
required in a custom render cycle, such as modifying the camera. Most update
code should be performed in update.

Commonly Used Objects
Mercury has a number of fairly common and useful objects that you can use in your screen
or object. You may even find an object you'd like to abstract from.

 CopperWindow [Doxy]
 MercuryCamera [Doxy]
 MercuryLight [Doxy]
 MercuryLoadableModel [Doxy]
 MercuryObject [Doxy]
 MercuryODEObjectLoadable [Doxy]
 MercuryODEWorld [Doxy]
 MercuryParticleField [Doxy]
 MercuryScreen [Doxy]
 MercuryShape [Doxy]
 MercurySoundObject [Doxy]
 MercurySprite [Doxy]
 MercuryText [Doxy]
 ScreenOutdoors [Doxy]

17

http://hgengine.sourceforge.net/Doxy/classScreenOutdoors.html
http://hgengine.sourceforge.net/Doxy/classMercuryText.html
http://hgengine.sourceforge.net/Doxy/classMercurySprite.html
http://hgengine.sourceforge.net/Doxy/classMercurySoundObject.html
http://hgengine.sourceforge.net/Doxy/classMercuryShape.html
http://hgengine.sourceforge.net/Doxy/classMercuryScreen.html
http://hgengine.sourceforge.net/Doxy/classMercuryParticleField.html
http://hgengine.sourceforge.net/Doxy/classMercuryODEWorld.html
http://hgengine.sourceforge.net/Doxy/classMercuryODEObjectLoadable.html
http://hgengine.sourceforge.net/Doxy/classMercuryObject.html
http://hgengine.sourceforge.net/Doxy/classMercuryLoadableModel.html
http://hgengine.sourceforge.net/Doxy/classMercuryLight.html
http://hgengine.sourceforge.net/Doxy/classMercuryCamera.html
http://hgengine.sourceforge.net/Doxy/classCopperWindow.html

	Table of Contents
	General Information
	General Description
	Current Features
	Code Features:
	Implemented Features:
	Built-In Features:
	Tools

	Goals
	Coding Standards
	Developer and Resource Information
	Major Entities
	DISPLAY
	FILEMAN
	PREFSMAN
	INPUTMAN
	LOG
	MESSAGEMAN
	THEME
	OBJECTREGISTER
	BENCHMARK

	Utility
	Global Namespace General Utility
	Global Namespace Math Utility
	Math Types Utility
	Data Types Utility

	Class Layout
	Commonly Used Objects

